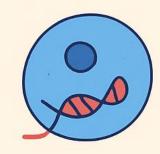
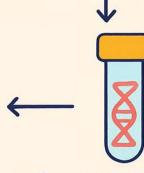

Diagnostic Moléculaire des patients atteints d'anémie de Blackfan-Diamond


Du sang au résultat : comment on lit le livre de l'ADN

On commence avec un tube de sang ou un prélèvement de moelle osseuse

L'ADN est comme une bibliothèque ou un livre de recettes

On sort l'ADN des cellules


Grâce à ces analyses, on comprend mieux la maladie

Le résultat est transmis au médecin généticien qui l'explique

On lit des milliers de gènes en même temps On cherche les différences (= mutations)

On prépare ce matériel pour le lire avec une technique spéciale : le séquençage

Le parcours d'un tube de sang:

- -Prélèvements
- -Réception au centre de tri
- -Transfert au laboratoire d'hématologie
- -Déballage et vérification de la concordance de l'identité du patient (feuille + tubes)
- -Enregistrement au laboratoire dans notre logiciel GENNO + dans la banque ADN
- -Etiquetage des prélèvements
- -Extraction de l'ADN
- -Dosage de l'ADN
- -Techniques moléculaires
- -Analyse des résultats
- -Validation technique puis biologique
- -Rédaction du compte rendu et envoi du résultat au prescripteur

Réception au centre de tri

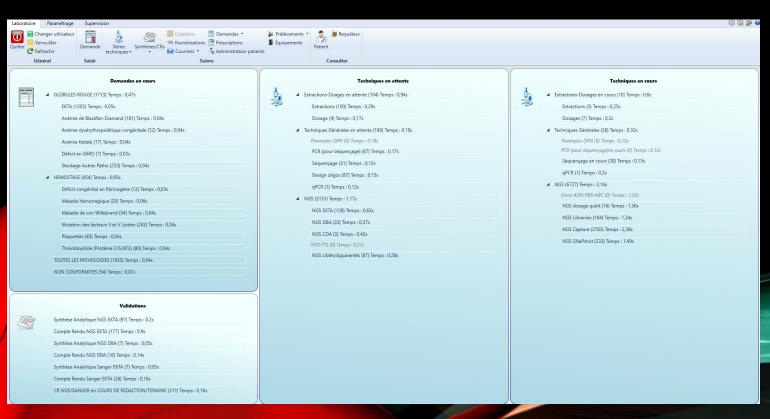
Effectué par les <u>agents</u> du centre de tri

Réception tous les jours dans une banette « BM »

Déballage et vérification de la concordance de l'identité du patient (feuille + tubes)

Effectués par les techniciennes de BM (Dorin, Annie et Ludivine)

Environ 1 à 2x/ semaine



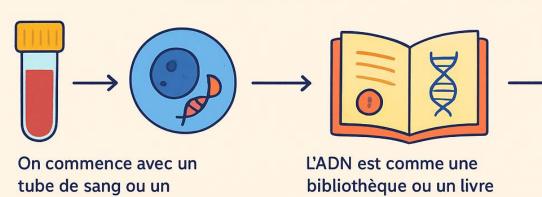
Enregistrement au laboratoire dans notre logiciel GENNO et Banque ADN

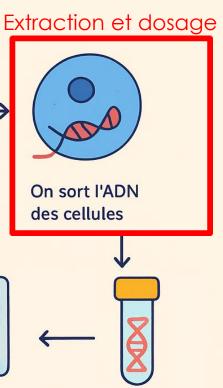
Effectué par les <u>secrétaires</u> (Mariam et Sabrina) et les <u>techniciennes de BM</u> (Dorin, Annie et Ludivine)

Environ 1 à 2x/ semaine, principalement le vendredi et lundi

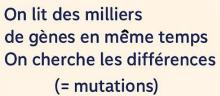
En 2024 : <u>560</u> prélèvements enregistrés -Dont 91 DBA -Dont 47 NGS passés sur les 91

Etiquetage des prélèvements

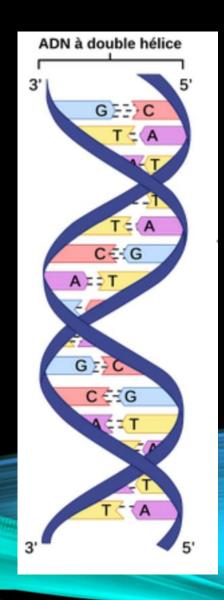

Effectué par les <u>techniciennes de BM (Dorin, Annie et Ludivine)</u>


Environ 1 à 2x/ semaine, principalement le vendredi et lundi


de recettes



prélèvement de moelle osseuse



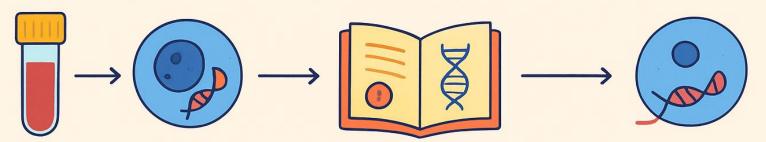
Le résultat est transmis au médecin généticien qui l'explique

On prépare ce matériel pour le lire avec une technique spéciale : le séquençage

Extraction de l'ADN sur le QIAsymphony et Dosage de l'ADN au QiaExpert

Effectués par les <u>techniciennes de BM (Annie, Dorin et Ludivine)</u> de la plateforme du GMP (Génétique Moléculaire et Pharmacologie)

Actuellement exclusivement le mardi

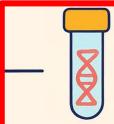

On dépose chaque prélèvement dans un des trous dispo

1 journée complète

Du sang au résultat : comment on lit le livre de l'ADN

On commence avec un tube de sang ou un prélèvement de moelle osseuse L'ADN est comme une bibliothèque ou un livre de recettes On sort l'ADN des cellules

NGS: 11 étapes


Grâce à ces analyses, on comprend mieux la maladie

Le résultat est transmis au médecin généticien qui l'explique

On lit des milliers de gènes en même temps On cherche les différences (= mutations)

On prépare ce matériel pour le lire avec une technique spéciale : le séquençage

NGS: Next Generation Sequencing

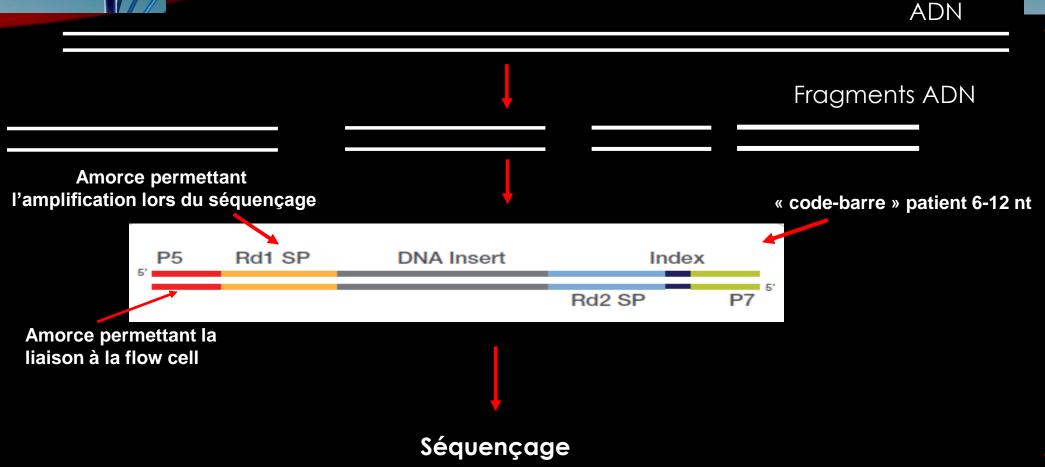
Effectué par les <u>techniciens formés en NGS</u> de la plateforme GMP (Génétique Moléculaire et Pharmacologie) en rotation (Biochimie, Hématologie et GMP)

<u>Première étape :</u>

Sortir les tubes d'ADN (beaucoup de boites...)

<u>Deuxième étape :</u>

Normaliser tous les ADN : utilisation du HAMILTON sauf certains tubes « particuliers » qui se feront à la main


ADN final à 4ng/µL

1 journée

Fabrication de la librairie

Fabrication « Librairie »

Hybridation des amorces universelles permettant l'amplification et des séquences permettant l'accrochage sur la flowcell Indexation des patients

Index : séquence courte qui permet d'identifier l'ADN d'un patient comme un code-barre Ce qui permet l'analyse de plusieurs patients en même temps

<u>Troisième étape :</u>

Préparation de la <u>librairie</u> NGS avec utilisation du Span8 (robot)

Description de la préparation de librairies WGS

Temps pour 48 échantillons

Fragmentation enzymatique + End Repair / A-Tailing

1 h

Ligation de l'Adaptateur Universel

1 h

Purification AMPureXP

1 h

PCR Pré-Capture avec indexation

20 min

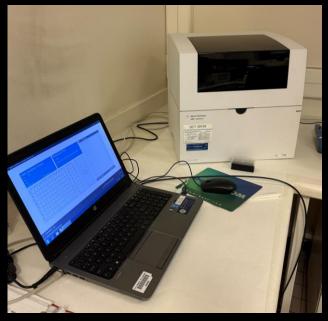
Préparation robotisée Biomek 4000

Préparation robotisée Biomek NXp Span8

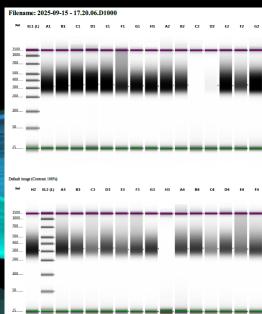
Purification AMPureXP

40 min

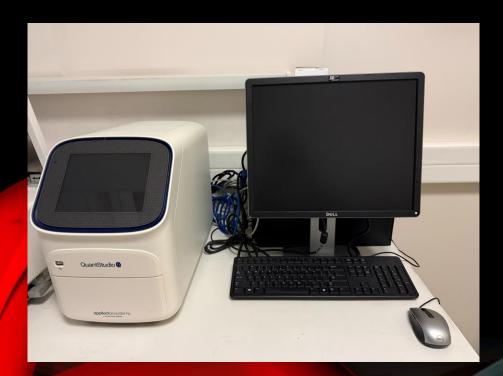
Capture par hybridation (Cf mode opératoire « Capture par hybridation_Technique robotisée ») et séquençage Illumina (Cf mode opératoire « MiSeq »)


Quatrième étape :

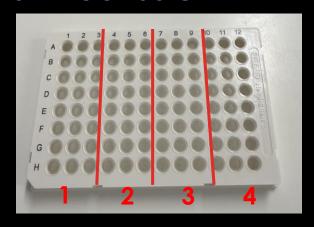
Purification de nos librairies sur le Biomek

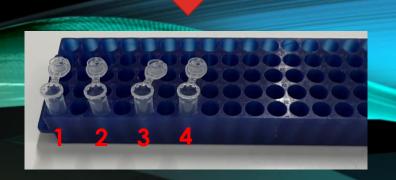

<u>Cinquième étape:</u>

Vérification de nos librairies sur la TapeStation



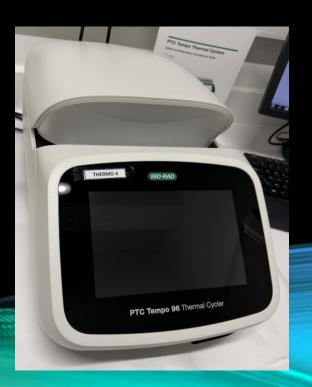
1 journée complète X2


<u>Sixième étape :</u>


Dosage/Quantification de la librairie sur le Quant-Studio

<u>Septième étape :</u>

4 POOLS de 23 échantillons (+1 eau) de librairie à faire à la main : 1 POOL hémato- 1 POOL Biochimie et 2 POOL de GP

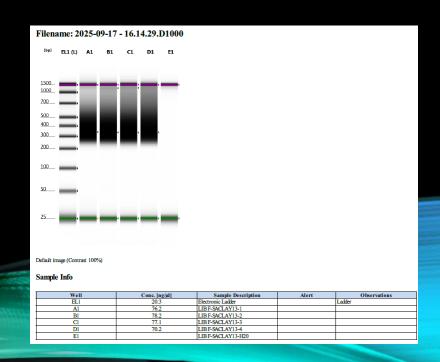

<u>Huitième étape :</u>

SpeedVac pendant 1h environ

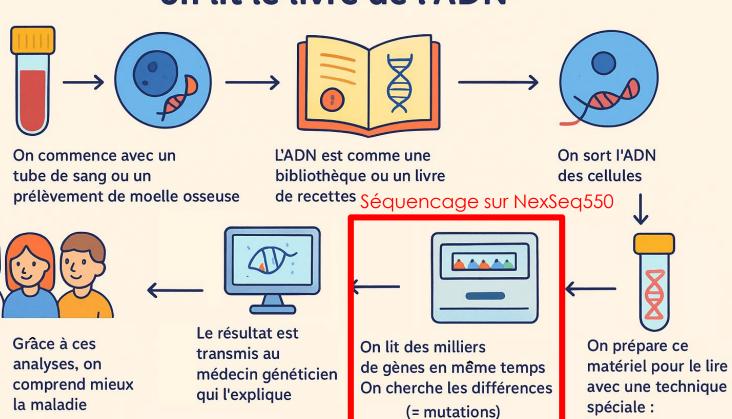
Neuvième étape :

Capture toute la nuit (18h)

1 journée complète


<u>Dixième étape :</u>

Purification des captures de librairies à la main et PCR post capture

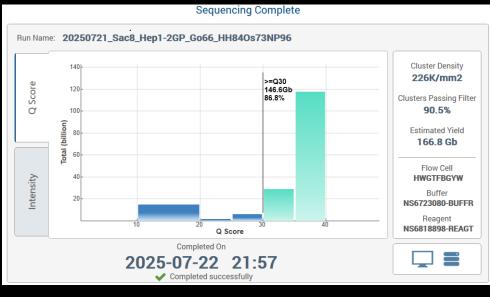


Onzième étape :

Vérification des produits de PCR post capture sur TapeStation

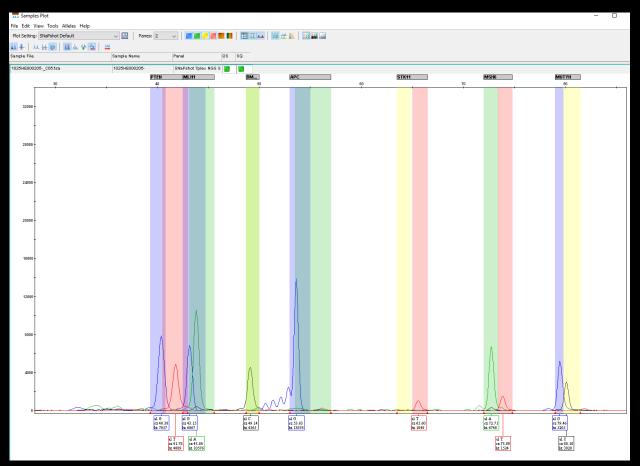
Du sang au résultat : comment on lit le livre de l'ADN

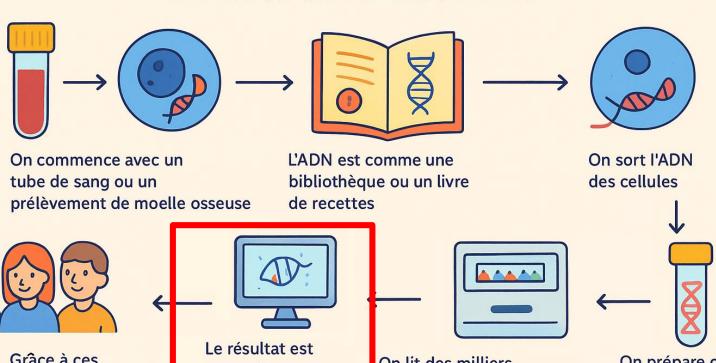
le séquençage


Séquencage sur NexSeq550


<u>Douzième étape :</u>

Lancement du NexSeq550




SNapShot: Identito-vigilance

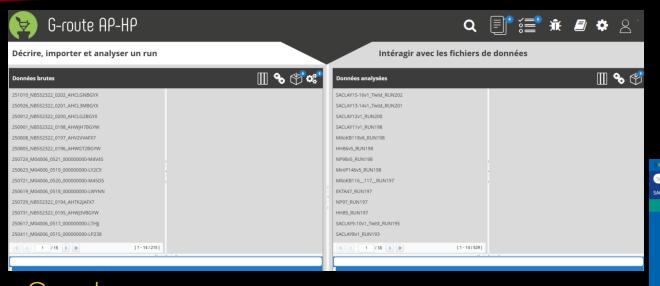
		<u>R</u>	<u>EF</u>	<u>SNaP</u> <u>shot</u>	<u>ref</u> NGS	<u>alt</u> ngs	A,T,C,G
1025HE000205	chr1_45331833	MUTYH	GC	CG	С	G	0,0,46,53
1025HE000205	chr2_47803699	MSH6	AT	AT	Α	T	65,67,0,0
1025HE000205	chr3_37042249	MLH1	GA	GA	Α	G	59,0,0,45
1025HE000205	chr5_112827157	APC	GG	CC	T	С	0,0,151,0
1025HE000205	chr10_86876022	BMPR1A	CC	CC	С		0,0,164,0
1025HE000205	chr10_87961150	PTEN	GT	GT	T	G	0,72,0,60
1025HE000205	chr19_1219275	STK11	TT	AA	G	Α	95,0,0,0

4025115000404	-1-4 45334033	MUTVI	00		-	-	0 0 27 20	
1025HE000181	chr1_45331833	MUTYH	GC	CG	C	G	0,0,27,30	
1025HE000181	chr2_47803699	MSH6	AA	AA	Α		109,0,0,0	
1025HE000181	chr3_37042249	MLH1	GA	GA	Α	G	40,0,0,34	
1025HE000181	chr5_112827157	APC	GA	CT	T	C	0,86,60,0	
1025HE000181	chr10_86876022	BMPR1A	CC	CC	C		0,0,137,0	
1025HE000181	chr10_87961150	PTEN	TT	TT	T		0,111,0,0 🚄	
1025HE000181	chr19 1219275	STK11			G	Α	40,0,0,31	CHECK

Du sang au résultat : comment on lit le livre de l'ADN

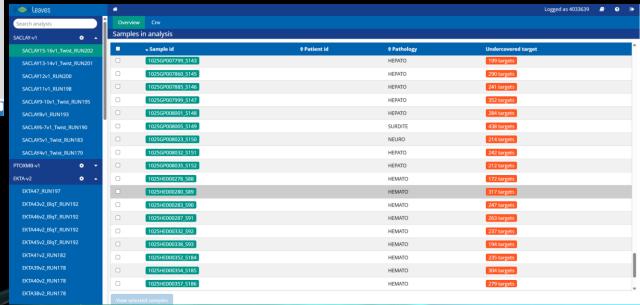
Grâce à ces analyses, on comprend mieux la maladie transmis au médecin généticien qui l'explique

On lit des milliers de gènes en même temps On cherche les différences


(= mutations)

Analyse et validation des résultats, rédaction du CR

On prépare ce matériel pour le lire avec une technique spéciale : le séquençage


Récupération des résultats:

Utilisation de plusieurs plateformes/logiciels (G-route puis Leaves couplé à QCI et Alamut

G-route

Leaves

Search Q 646 Tests in All My Tests	4 1 2 3 = 13 >		Refresh Test List Crea
ccession ID	Test Product Code	State ▼ Filter By (8) ▼ (?^^^AMA-DD he/mmas)	Test Date A
GR1099-1024HE000908_976	ABC - Hereditary hereditary	Pending ludivine devid⊜aphp.fr 2025-10-16 13:23:08	2025-07-07
GR1000-1024HE000540_S75	ABC - Hereditary hereditary	Pending tudivine david@aphp.fr 2025-10-16 13:22:15	2025-07-07
GR933-1024HE009395_S74	ABC - Hereditary hereditary	In Review furthine david@aphp tr 20,25-10-16 10,14 18	2025-07-07
GR1214-1025HE000090_S92	ABC - Hereditary hereditary	In Review ludivine.david@aphp.fr 2025-10-16.13:08:40	2025-07-07
QR1183-1025HE000019_961	ABC - Hereditary hereditary	In Review luthvine, david⊜aphip, fr 2025-10-16 12:42:41	2025-07-07
GR1179-1024HE001085_980	ABC - Hereditary hereditary	in Review ludivine.david@aphp.fr 2025-10-16 11:41:08	2025-07-07
GR1170-1024HE001060_955	ABC - Hereditary hereditary	In Review ludivine devid⊜aphp tr 2025-10-16 11:00:54	2025-07-07
GR1169-1024HE001054_954	ABC - Hereditary hereditary	In Review huthvine devid⊜aphtp.fr 2025-10-16 10:38:17	2025-07-07
3R1165-1024HE001038_953	ABC - Hereditary hereditary	In Review ludivine david⊜aphp.fr 2025-10-16 10:17:47	2025-07-07
3R1160-1024HE001032_952	ABC - Hereditary hereditary	In Review luctivine, david⊚aphp fr 2025-10-16 09:48:31	2025-07-07
PR1159-1024HE001030_S35	ABC - Hereditary hereditary	In Review huldwine david@aphp.fr 2025-10-02 12:54:15	2025-07-07
12140-1025HE000076_543	ABC - Hereditary hereditary	In Review ludivine david@aphp fr 2025-10-02 14:41:04	2025-07-07
R1168-1024HE001044_S37	ABC - Hereditary hereditary	In Review tudnine david@aphp tr	2025-07-07

🌉 Clinica	l Insight	ght Variant List Variant Details Review & Report Ludvine David Test List Sample List Variant Directory Documentation Contact Us Settings Logou										ogout			
ccession ID (Test F 024HE000073_	Product Code) S81-DBA2071 (ABC	C - Hereditary)				Age -		Sex Female		Ethnicity -		Phenotype(s) Show		9	O
Phenotype: Di	iamond-Blackfan anemi	ia • (I)	Age of Onset Birth - 11 Years (i)	Disease Prevalence 1/149254 (i)	Mode of Inheritance Dominant										
Gene RPS26 Transcript(s) NM_001029.5	Variant c.9_12del p.K4Efs*4	10 (loss ()	Population Fre Genotype: Impact:	equency: 0% gnomAD Het Frameshift					Patho	assification ogenic ackfan anemia					
Open	< Previous	Next >	Use Classificati	on View Bibliography											
Filter Settings *	# ⊕ Searc	ch		② 24 variants					← 1 →						•
Gene		Alteration		Phenotype	Proband i	Mode Of Inheritance	Function	Impact	CADD Score	ClinVar	Max Population Frequency	Variant Findings	Publications	HGMD Accession	lî l
RPS26		c.9_12del p.K4Efs*40		Diamond-Blackfan anemia	_	dominant	(055	Frameshift	29.3	P(3)	0% gnomAD	13	8	CD122319 (DM)	Ш
PARP4		c.3228_3285+5del	linsATCTTTGTTTCG(Hereditary Disorder	_		normal				0% gnomAD			-	Ш
PIEZO	1 !	c.4313C>T p.P1438L		Dehydrated hereditary stomat	_	dominant	normal	Missense	23.7	VUS(1)	0.0049% gnomAD (East Asian)	2	1	-	Ш
RPS6K	B2	c.269C>T p.T90I		Hereditary Disorder	_	-	normal	Missense	15.95		0.6115% gnomAD (African)	-	-	-	Ш
PARP4	<u></u>	c.1384C>T p.R462C		Hereditary Disorder	_		normal	Missense	25.8	B(2)	4.5961% gnomAD (African)	1	0		U
PARP4		c.2972A>G p.K991R		Hereditary Disorder	_	-	normal	Missense	<10	B(2)	4.3568% gnomAD (African)	1	0		
PARP4		c.3231C>T p.S1077S		Hereditary Disorder	_		normal	Synonymous	<10		4.2851% gnomAD (African)	-	-		
PIEZO	1 🔼	c.6829C>A p.L2277M		Dehydrated hereditary stomat	_	dominant	normal	Missense	23.2	LP(1), LB(1), B(3)	3.8999% gnomAD (South Asian)	18	9	CM1911811 (DM?)	
POLE		c.2550C>T p.18501		Susceptibility to colorectal ca	_	dominant	normal	Synonymous	<10	LB(2), B(14)	4.7160% gnomAD (African)	7	1	-	
RPL15		c11+241G>A		Diamond-Blackfan anemia	_	dominant	normal	-	<10		0.0942% gnomAD (European)	-	-	-	
RPL5	<u></u>	c.3+3G>C		Diamond-Blackfan anemia		dominant	normal	Splicing	19.99	LB(9), B(5)	0.4841% gnomAD	13	4	CS100830 (DM)	v

ALAMUT

RPS26 (Ribosomal protein S26) Variation

NM_001029.5(RPS26):c.9_12del

MANE Select

Variant Overview

The deletion is located in 'NM_001029.5' exon 2.

Nomenclature HGVS:

cDNA Level: NM_001029.5(RPS26):c.9_12del gDNA Level: Chr12(GRCh38):g.56042430_56042433del Niveau des protéines: p.(Lys4Glufs*40)

This variant is in protein domain:

- Ribosomal protein S26e
- Ribosomal protein S26e superfamily

Effet sur le codage

The variation generates a 'Frameshift' as coding effect.

The frameshift starts at codon Lys4.
The new reading frame ends in a STOP codon at position 40.

External Databases

This variant is known to:

ClinVar (2025-01-20): 1076796 (Pathogenic** - Diamond-Blackfan anemia | Diamond-Blackfan anemia 10).

Identification des variants d'intérêts avant validation biologique par Dorin et/ou Ludivine Plusieurs jours

Validation biologique des résultats par Lydie avec le dossier patient complet

1 jour/semaine

Préparation de la synthèse des résultats puis du CR par les techniciennes de BM GR (Dorin et Ludivine)

Plusieurs jours

Rédaction et validation du CR par Lydie-Impression puis envoi par les secrétaires (Mariam et Sabrina)

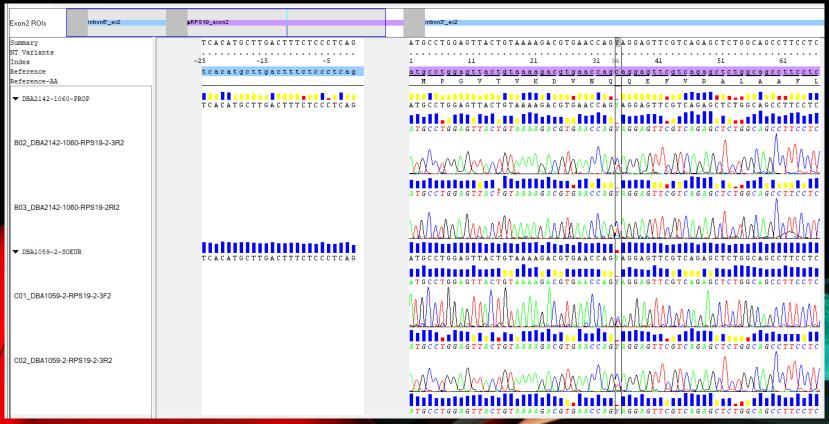
Plusieurs jours

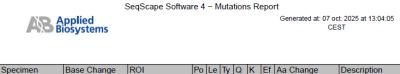
Le parcours d'un tube de sang Au total :

- -Prélèvements 1 jour
- -Réception au centre de tri 1 jour
- -Déballage et vérification de la concordance de l'identité du patient (feuille + tubes)
- -Enregistrement au laboratoire dans notre logiciel GENNO + dans la banque ADN
- -Etiquetage des prélèvements
- -Extraction sur le QIAsymphony
- -Dosage au QiaExpert
- -Technique moléculaire : NGS et SNaPshot 10 jours

SANGER 2 jours

- -Analyse des résultats Plusieurs jours
- -Rendu au prescripteur Plusieurs jours (validation biologique + CR)

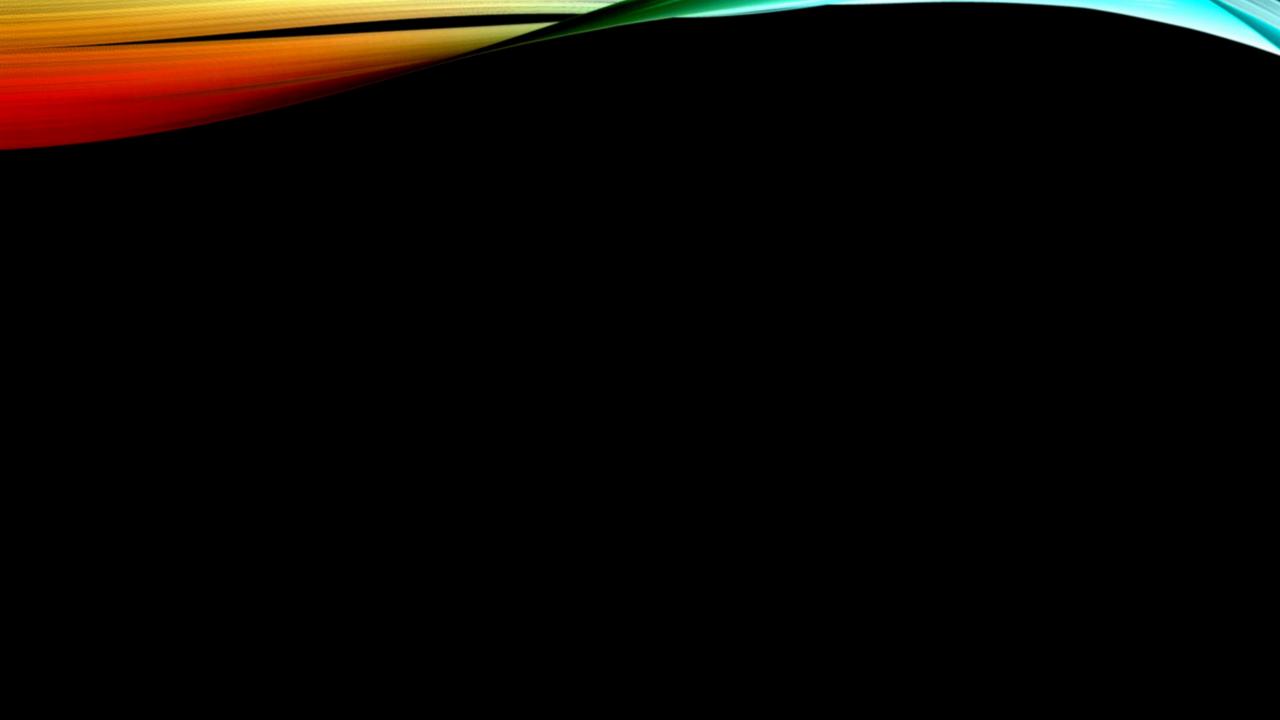



1 jour

SANGER

Exon 02	NM 001022;c.34C>T HTZ	Ch=40/CDCh20\ra 440C0000CsT	4-1		
		Chr19(GRCh38):g.41860808C>T	p.(Gln12*)	Classe 5	stop_gained
Exon 4	NM_001042351.2:c.202G>A HTZ	ChrX(GRCh38):g.154536002C>T	p.(Val68Met)	Classe 5	missense_variant
Exon 5	NM_001042351.2:c.376A>G HTZ	ChrX(GRCh38):g.154535277T>C	p.(Asn126Asp)	Classe 2	missense_variant
Intron 1	NM_000463.2:c4140dup HOMO	Chr2(GRCh38):g.233760247_233760248dup	p.?	Classe 5	upstream_gene_variant
	Exon 4 Exon 5	Exon 4 NM_001042351.2:c.202G>A HTZ Exon 5 NM_001042351.2:c.376A>G HTZ	Exon 4 NM_001042351.2:c.202G>A HTZ ChrX(GRCh38):g.154536002C>T Exon 5 NM_001042351.2:c.376A>G HTZ ChrX(GRCh38):g.154535277T>C	Exon 4 NM_001042351.2:c.202G>A HTZ ChrX(GRCh38):g.154536002C>T p.(Val68Met) Exon 5 NM_001042351.2:c.376A>G HTZ ChrX(GRCh38):g.154535277T>C p.(Asn126Asp)	Exon 4 NM_001042351.2:c.202G>A HTZ ChrX(GRCh38):g.154536002C>T p.(Val68Met) Classe 5 Exon 5 NM_001042351.2:c.376A>G HTZ ChrX(GRCh38):g.154535277T>C p.(Asn126Asp) Classe 2

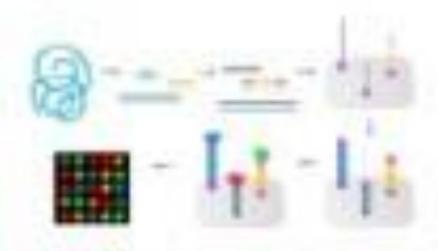
Utiliser pour les DPN et enquête familiale



Specimen	Base Change		Po siti on	ng			K no w n		Aa Change	Description
DBA1059-2- SOEUR	34c>Y	RPS19_exon2	34	1	S ub	13	no	no ns en se	Q12[Q,*]	
DBA2142- 1060-PROP	34c>Y	RPS19_exon2	34	1	S ub	3	no	no ns en se	Q12[Q,*]	

MERCI POUR VOTRE ATTENTION

- Merci: à l'association
- Aux familles et aux patients
- A Lydie et à tous nos collègues



TECHNIQUE DE BIOLOGIE MOLECULAIRE

SÉQUENÇAGE NOUVELLE GÉNÉRATION

Séquençage par synthèse : Illumina

Aggreeable auditement in ex-

