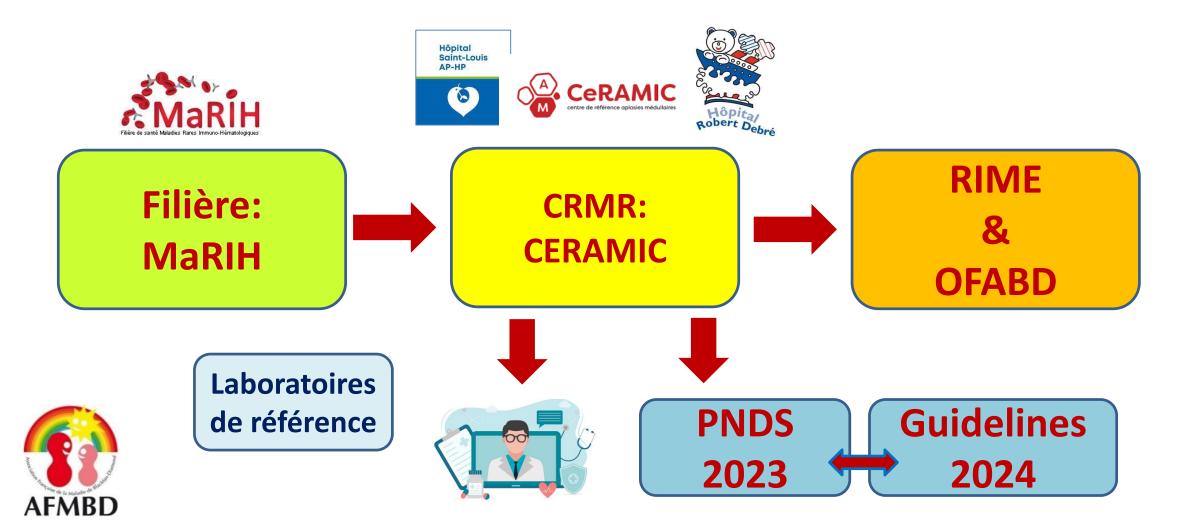

Syndrome de l'Anémie de Blackfan-Diamond Actualités

Thierry Leblanc

XXV^{ème} Journée de l'AFMBD 25-27 Octobre 2025 - Neuvy sur Barangeon



Publications SABD en 2025

SABD: publications en 2025 (OCT 2024- OCT 2025)

30 articles référencés sur PubMed

Physiopathologie : 6

Modèles animaux

Aspects cliniques

Déficit immunitaire & SABD : 1

Corrélations GENO/PHENO : 1

Cas cliniques : 9 Diagnostic génétique : 7

Aspects thérapeutiques:

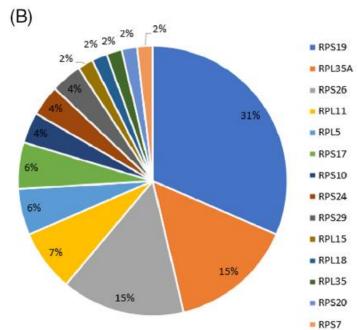
Thérapie génique : 2

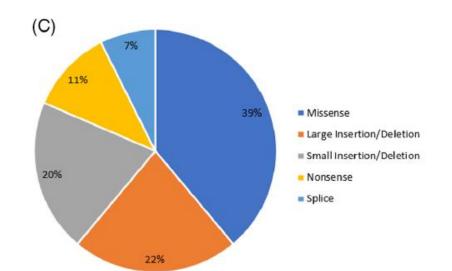
Allogreffe : 1

Revues & éditoriaux : 2

Genotype-phenotype associations in individualswith Diamond Blackfan anaemia

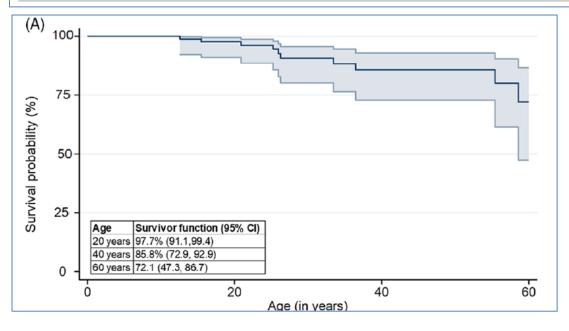
Cohorte du NCI: 121 pts (84 familles)


Age médian au diagnostic: 0,25 an [0-65.1]


Age médian au dernier suivi: 23,2 ans [0,89-85,91]

Variant génétique identifié: 71% des pts: 67% RPS et 33% RPL

- Gène le plus fréquent: RPS19
- Grandes insertions/délétions: 22%


Comparaison pts AVEC ou SANS gène identifié

	Total cases		Cases with	Cases with known gene		Cases with unknown gene	
Bone marrow phenotypes ¹	n = 121	Per cent	n = 86	Percent	n = 35	Percent	<i>p</i> -value
Anemia	110	90.9%	76	88.4%	34	97.1%	0.174
Neutropenia	29	24.0%	19	22.1%	10	28.6%	0.485
Thrombocytopenia	7	5.8%	5	5.8%	2	5.7%	1
Treatment-related phenotypes	n = 121	Per cent	n = 86	Percent	n = 35	Percent	p-value
On treatment for anaemia	86	71.1%	54	62.8%	32	91.4%	0.002 🔻
On steroid treatment	35	28.9%	17	19.8%	18	51.4%	0.001 🗱
On chronic pRBC treatment	33	27.3%	22	25.6%	11	31.4%	0.509
НСТ	18	14.9%	15	17.4%	3	8.6%	0.269
Spontaneous remission	18	14.9%	17	19.8%	1	2.9%	0.022 🔻
Anaemia not needing treatment	17	14.0%	15	17.4%	2	5.7%	0.147
Congenital abnormalities	n = 114	Per cent	n = 80	Percent	n = 34	Percent	p-value
Any congenital abnormality	68	59.6%	43	53.8%	25	73.5%	0.061
Craniofacial	35	30.7%	19	23.8%	16	47.1%	0.025
Cardiac	21	18.4%	13	16.3%	8	23.5%	0.430
Thumb	28	24.6%	20	25.0%	8	23.5%	1
Urogenital	15	13.2%	8	10.0%	7	20.6%	0.140
Intellectual disability	26	22.8%	18	22.5%	8	23.5%	1
Other	13	11.4%	6	7.5%	7	20.6%	0.057
Other abnormalities	n = 114	Per cent	n = 80	Percent	n = 34	Percent	p-value
Short stature ²	51	44.7%	33	41.3%	18	52.9%	0.305
Chronic GI problems	17	14.9%	10	12.5%	7	20.6%	0.267

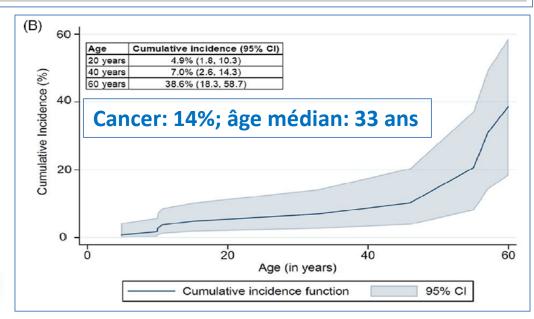

Cohorte du NCI (3)

TABLE 2 Association of phenotypic features of patients with Diamond Blackfan anaemia (DBA) by gene and ribosomal protein subtype.

Phenotype	Gene	Per cent of cases (counts)	Per cent of comparison cases (counts)	<i>p</i> -value
Requiring treatment	RPS29	19% (3/16)	73% (51/70)	9.6E-05
Neutropenia ¹	RPL35A	100% (8/8)	14% (11/78)	1.4E-06
Intellectual disability	RPL	55% (11/20)	12% (7/60)	0.00020
Chronic GI abnormality	RPL	40% (8/20)	3% (2/60)	0.00014

AFMBD 2025 TL

Gianferante & al, eJHaem 2024

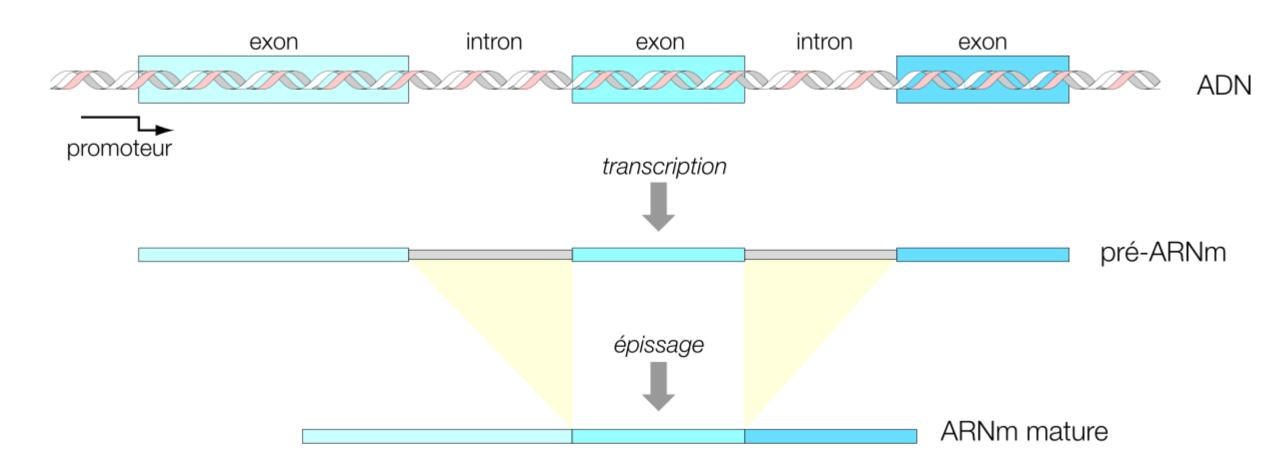
Identification of 2 novel noncoding variants in patients with Diamond-Blackfan anemia syndrome by whole genome sequencing

2 enfants avec un tableau de SABD mais bilan génétique (NGS, CGH & WES) négatif.

Ré-analyse du WES: identification de 2 variants dans les séquences non-codantes:

- de RPS7 (transmis par la mère)
- de *RPS19 (de novo)*

Caractère pathogène confirmé par l'étude des ARN (RNASeq)



Wen & al, Blood Advances 2025

Maturation des ARN messagers

Patients sans gène identifié

Quelle est la proportion de faux-négatifs actuellement?

Plus de variants non retenus/reconnus dans des gènes connus que de

nouveaux gènes?

Germline mosaicism in a family affected by Diamond-Blackfan anaemia

1ère grossesse:

RCIU: < 5^{ème} percentile à 22SA; pas de malfo.

MFIU à 29 SA (hydrops non évident)

Génétique: variant de classe 5 de RPL35A absent

chez les parents

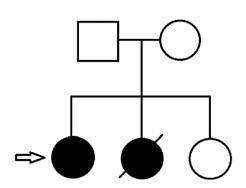
⇒ mutation *de novo*

2^{ème} grossesse:

RCIU + pré-éclampsie: extraction en urgence

à 37 SA; pas de malfo.

2 mois: anémie (infection)


3 ans: anémie (7,8 g) macrocytaire (VGM 95)

+ thrombocytose (610 G/L)

HbF: ∅, ADAe: ∅, mais moelle atypique

(dyserythropoïèse & dysmégacaryopoïèse)

Génétique: variant RPL35A présent...

Conclusion: mosaïcisme somatique (non démontré ici)

Dunlea & al, Br J Haematol 2025

Enfant SABD & mutation absente chez les 2 parents?

Situation la + fréquente: mutation de novo pendant la gamétogénèse

(maladie AD: 1 grossesse/295) *

Mutation de novo:

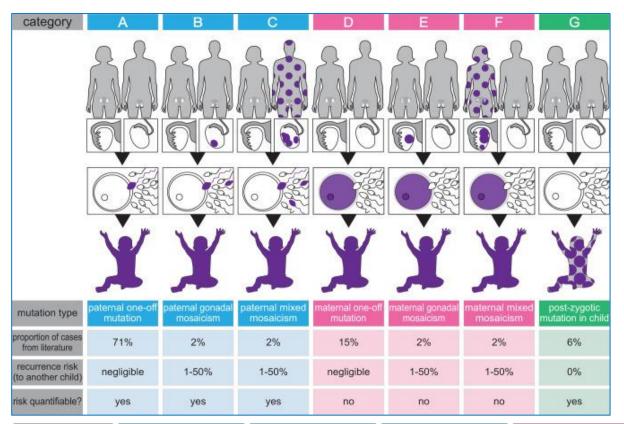
- rares (taux de mutation chez l'homme: 1,2 x 10⁻⁸ par pb)
- Fréquence variable selon la maladie

Survient le plus souvent comme un évènement ponctuel

- Pendant la spermatogénèse: 71%
- Pendant l'oogénèse: 17%

Risque de récurrence pratiquement nul

Beaucoup + rare: mosaïcisme <u>post zygotique</u> pouvant atteindre ≠ types de cellules


Si origine parentale: diagnostic difficile et variable selon le degré de mosaïcisme (gonosomal ou gonadique pur)

Si analyse sang négative (sensibilité 10-15%) faire étude sur d'autres types de cellules (salive, urine,...) & cellules germinales

^{*} Bernkopf M & al, Nat Com 2023

Comment distinguer ces 2 situations?

Etude systématique: 59 familles avec 1 seul enfant atteint ⇒ Prélèvements multiples: sang, muqueuse, urines + sperme

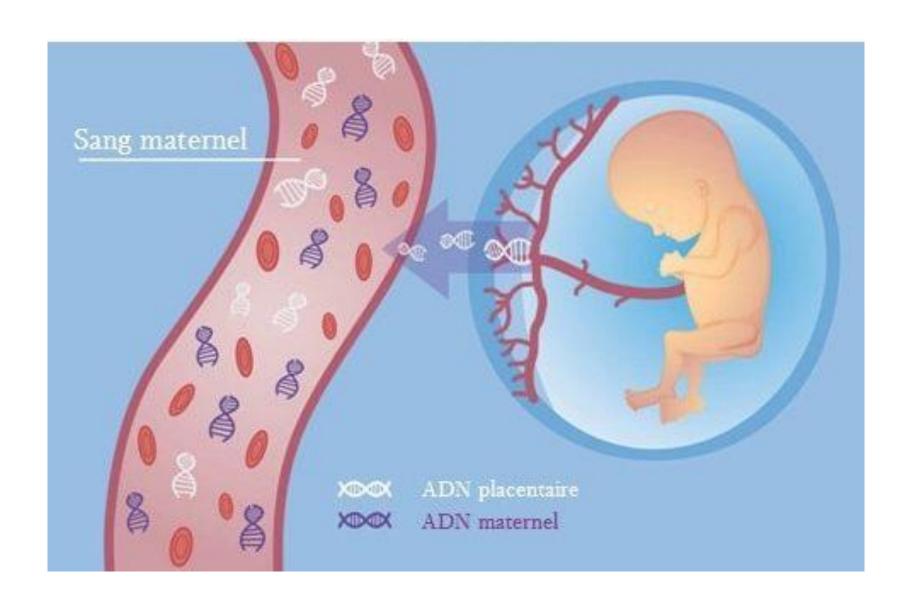
- 5 familles (9%) : mosaïcisme démontré Sperme: risque estimé: 5 à 12%
- 35 familles (59%): mosaïcisme exclu: risque de récurrence < 0,1%

Bernkopf M & al, Nat Com 2023

category	Α	В	С	D	E	F	G	A/D/E
mutation type	paternal one-off mutation	paternal gonadal mosaicism	paternal mixed mosaicism	maternal one-off mutation	maternal gonadal mosaicism	maternal mixed mosaicism	post-zygotic mutation in child	haplotype unresolved
this study overall	57.6% 34/59 cases	1.7% 1/59 cases	5.1% 3/59 cases		3% cases	3.4% 2/59 cases	1.7% 1/59 cases	15.3% 9/59 cases
refined RR	negligible < 0.1%	VAF _{sperm}	VAF _{sperm}	estimated F	RR ~ 0.49%	high - not quantifiable	0%	estimated RR ~ 0.1%

Quid du diagnostic prénatal?

Pour mémoire: pas de possibilité de prédire le phénotype d'un enfant à naitre à partir de celui du parent atteint


Approches courrantes:

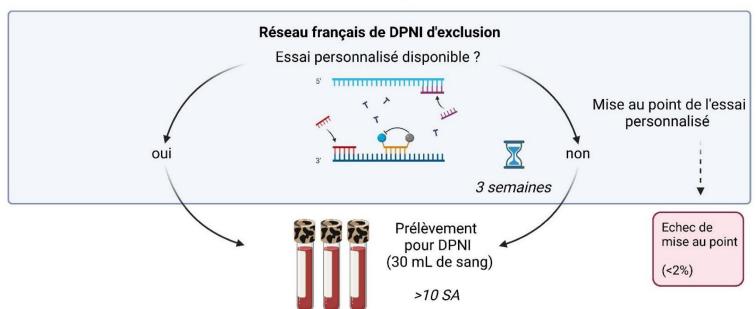
- DPN: en début de grossesse:
 - Biopsie de trhophoblaste
 - Amniocentèse
 - Ponction de sang fœtal (si test fonctionnel)
- DPI: + lourd; suppose un âge maternel < 30-35 ans

DPN, DPI & DPNI

	DÉPISTAGE PRÉ NATAL	DÉPISTAGE PRÉ IMPLANTATOIRE		
Pré requis	Accord d'un CPDPN	Accord d'un CPDPN Age maternel < 38 ans Bilan de fertilité		
Délai d'accès	Immédiat	12 à 18 mois		
Modalités pratiques	 → DPN Invasif: - Biopsie de trophoblaste entre 12 et 14 SA - Amniocentèse après 16 SA → DPNI: Prélèvement sanguin maternel à partir de 12 SA 	Stimulation hormonale maternelle Prélèvement d'ovocyte par ponction ovarienne Prélèvement de sperme paternel. Réalisation d'une FIV-ICSI. Prélèvement d'une cellule embryonnaire		
Principales difficultés	Implique le recours a une IMG si le fœtus est porteur Spécifique au DPN invasif : Risque de fausses couches de 0,5 à 1% Spécifiques au DPNI : - Uniquement en cas de pathologie de transmission paternelle - Rares échecs techniques	Délai d'accès Lourdeur logistique Contre indications en cas de troubles de la fertilité ou d'âge maternel « avancé » Chances de succès autour de 20% Difficultés d'accès supplémentaires si mutation de novo (DPI non réalisable dans tous les centres le cas échéant)		

DPNI

Nouvelle approche: DPNI


Diagnostic d'exclusion +++: présence ou absence du variant paternel dans le sang de la mère:

- Maladie AD: OK si c'est le père qui est atteint
- Maladie AR: il ne faut pas que les parents aient le même variant (homozygotie): OK si hétérozygotie composite: si c'est le cas:
 - Si absence de variant paternel: c'est bon!
 - Si présent il faudra, par une technique invasive, déterminer si la mère a transmis ou non « son » variant

Couple à risque de transmission d'une maladie monogénique

Variant mono-nucléotidique ou petite indel (Origine paternelle ou *de novo*)

DPNI d'exclusion par PCR digitale

- Evaluation de la fraction fœtale
- Recherche du variant d'intérêt

Fraction fœtale suffisante & Mise en évidence du variant d'intérêt

Si MM dominante (variant de novo ou paternel) :

- Fœtus atteint
- Si MM récessive (variant paternel) :
- **Prélèvement invasif proposé** pour l'étude du variant maternel

Fraction fœtale suffisante & Absence du variant d'intérêt

Si MM dominante ou récessive (variant de novo ou paternel) :

- Fœtus non atteint

Contrôle 1 semaine plus tard

Fraction fœtale insuffisante

- Non conclusif

Nouvelle prise de sang maternel ou Prélèvement invasif proposé

Technique actuellement appliquée à Cochin

Préalable:

- Mutations connues et approche applicable

NB: peut être difficile si grandes délétions/additions

- Parents qui prendront en compte le résultat
- Accord d'un comité d'éthique
- Si 1^{er} cas pour ce variant: temps de mise au point de la technique: 3 à 4 semaines (au mieux: anticiper!)

Résultats pour l'équipe de Cochin Dr. Juliette NECTOUX

- Mise au point de la technique: OK dans 93% des cas
- Prélèvement à analyser: dès S10 d'aménorrhée
- Résultat clinique dans quasi 100% des cas (rares échecs: insuffisance d'ADN fœtal circulant: reprélever un peu plus tard...)

Immunodeficiency in children with Diamond Blackfan and Diamond Blackfan like anemia

N = 34: âge md: 24 ans [1-85]

NB: consanguinité: 56%

- 14/34 ont un score IDR > 6 ⇒ 4 des
 14 ont un taux bas d'Ig
- taux d'Ig non ≠ chez les pts
 corticosensibles & corticorésistants

NB: 8 ont eu un test génétique: 7/8 ont des variants du gène *CECR1/DADA2*

Diagnosis or condition	Score	Diagnosis or condition	Score
Pneumonia, organism	3	Malabsorption	2
unknown		Giardiasis	2
Bacterial pneumonia	3	Autoimmune hemolytic	2
Septicemia	3	anemia	
Empyema	3	Chronic sinusitis ^a	1
Bronchiectasis	3	Chronic bronchitis ^a	1
Osteomyelitis	3	Chronic otitis media	1
Other abscess	3	Chronic diarrhea ^a	1
Aseptic meningitis	3 3	Acute bronchitis	1
Splenic abscess	3	Acute sinusitis	1
Chronic mastoiditis ^a	3	Fever of unknown origin	1
Bacterial meningitis	3	Cutaneous candidiasis ^a	1
Liver abscess	3	Suppurative otitis media	1
Lung abscess	3	Failure to thrive	1
Lymphopenia	2	Thrush	1
Cellulitis	2	Lymphadenitis	1
Neutropenia	2	Gastroenteritis	1
Splenomegaly	2	Mycosis	1
Lymphadenopathy	2	Acute otitis media	1
Immune thrombocytopenia	2	Abnormal weight loss	1

^a Diagnoses counted as chronic conditions counted only once in a 12-month period.

Ragab & al, Blood Cells, Molecules and Diseases 2025

Conditionnement de greffe

Un conditionnement de greffe permet:

- d'éliminer la moelle du receveur
- D'éliminer le système immunitaire du receveur

Balance entre <u>l'efficacité</u> & <u>la toxicité</u>

MAC: Myelo-Ablative Conditioning regimen

RIC: Reduded-Intensity Conditioning regimen

Etude

Exemple de RIC: Fludarabine : 30 mg/m²/j x 5

Thiotepa: 10 mg/kg/j x 1

Melphalan: 70 mg/m²/j x 2 ± SAL si MUD

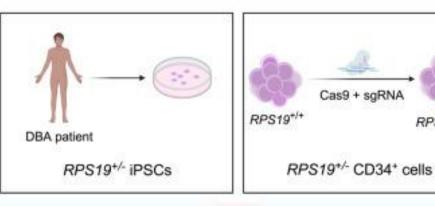
Reduced toxicity conditioning for hematopoietic stem cell transplantation in children with DBA

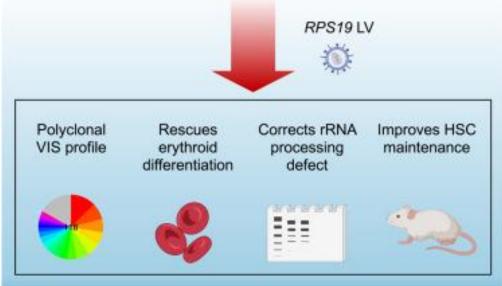
Characteristics	Patient 1	Patient 2	Patient 3	Patient 4
Age at diagnosis in months/age at HSCT in years	3/14	3/8	4/5	8/8
DBA mutation	RPS17 (whole gene deletion)	<i>RPS26</i> (p.R87*)	<i>RPS19</i> (p.Ala100Trpfs*12)	RPS19 (exon 2-3deletion)
BM cellularity pre-HSCT, %	90	60-70	40-50	30
LIC: highest/pre-HSCT, mg/gm liver tissue	12.8/2.98	8.76/4.18	14.06/5.75	7.04/2.23
Ferritin pre-HSCT, ng/mL	895	4,301	1,054	227
Donor type/graft source	MSD/BM	MUD/BM	MUD/BM	MUD/BM

₽ 4/4 vivants sans GVH à 11-21 mois de la greffe

Amr Qudeimat & al, Haematologica 2024

NB: MVO

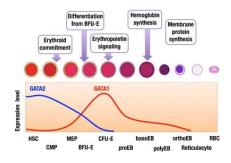

Preclinical development of lentiviral vector gene therapy for Diamond-Blackfan anemia syndrome



Développement d'un nouveau vecteur (RPS19)

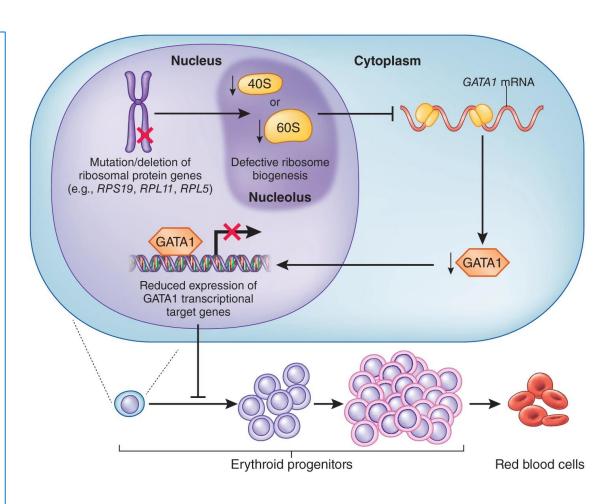
Efficacité démontrée via modèles cellulaires & murins

Futur essai de phase 2...

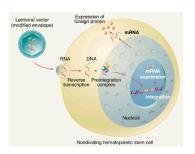


RPS19*

GATA1


GATA1: FDT majeur de l'érythropoïèse

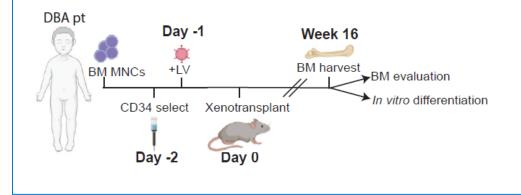
Passé de gène candidat

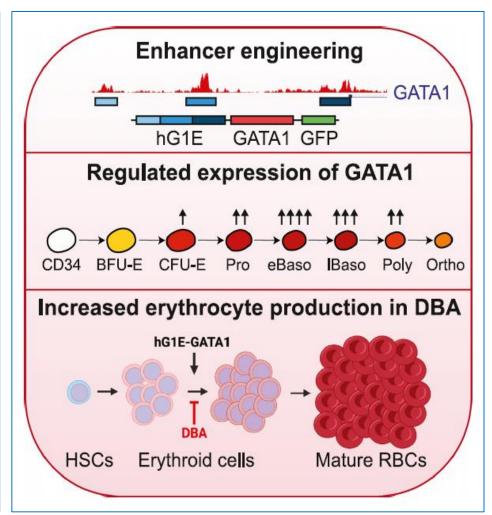

Actuellement: causal pour des cas de « DBAS-other »

(< 1% des cas dans les registres)

Ludwig & al, Nat Med 2014

Regulated GATA1 expression as a universal gene therapy for Diamond-Blackfan anemia




Vecteur (lentivirus) ciblant la lignée érythroïde

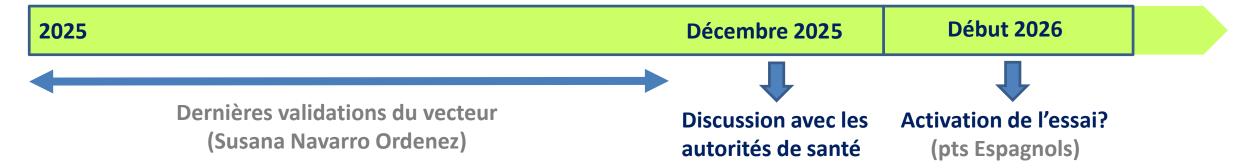
Etudes *in vitro*: cellules de pts SABD:

de l'érythropoïèse par l'expression « erythroïde-restreinte » de GATA1

Génotypes testés: *RPS19* (2), *RPS17*, *RPS24*, *RPS26*, *RPL5* (2), *RPL11*, *RPL35A*

Thérapie génique: on en est où en 2025?

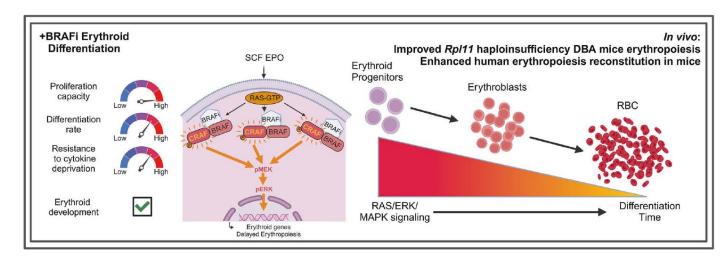
Aucun essai ouvert ou qui ouvrira cette année

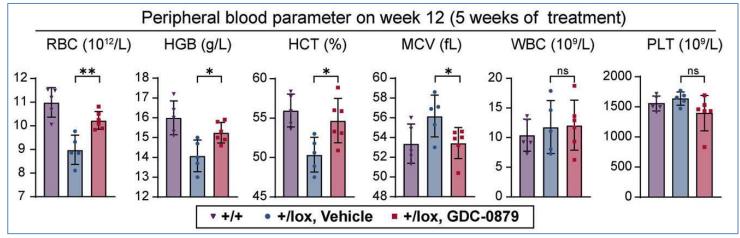

Toujours beaucoup de « com »...

Equipe de Madrid est la plus avancée?

Timeline (Cristina Belendez)

En pratique:


même pour un enfant muté RPS19, si bonne indication de GREFFE+bon donneur: y aller


BRAF inhibitors enhance erythropoiesis and treat anemia through paradoxical activation of MAPK signaling

Effet promoteur de l'érythropoïèse des BRAFi: stimulation de la prolifération par décalage de la différenciation

Effet démontre aussi dans un modèle murin SABD (RPL11) sans modification GB & plaquettes

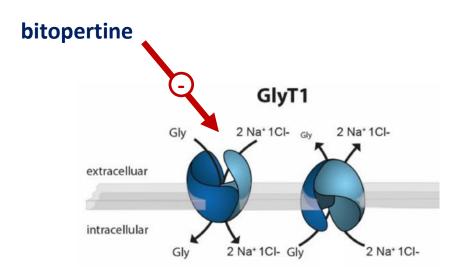
Nouvelles approches thérapeutiques en cours?

Etudes & essais cliniques

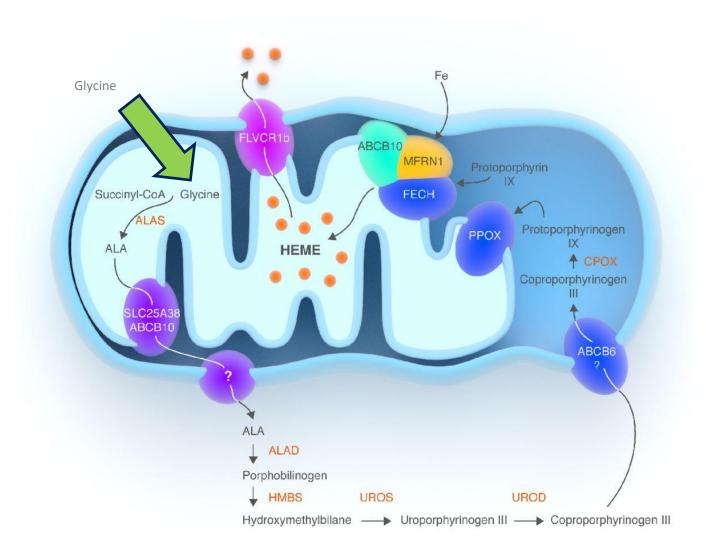
59 études enregistrées sur le site:

- la plupart (pas d'étude spécifique pour les pts SABD): études sur les modalités de greffe (N = 35: sources de CSH, conditionnements, GVH,...) ou de chélation (N = 8)

NB: nombreuses études terminées


Etudes de registre dont RIME (N = 3)

Etudes sur le diagnostic génétique (N = 2)


Etudes cliniques évaluant un traitement hors greffe (N = 11):

- Anciennes études toujours sur le site mais arrêtées et non concluantes (sotatercept, eltrombopag, trifluoperazine, lenalidomide, CSA & ATG, rituximab)...
- 1 étude de phase 1/2: bitopertin
- Toujours pas d'étude actuellement ouverte de thérapie génique sur ce site

Synthèse de l'hème

Transporteur de la Glycine qui est nécessaire à la 1^{ère} étape de la synthèse de l'hème

A Phase I/II, Intra-Patient Dose-Escalation Study of the Selective GlyT1 Inhibitor, Bitopertin for Steroid-Refractory Diamond-Blackfan Anemia

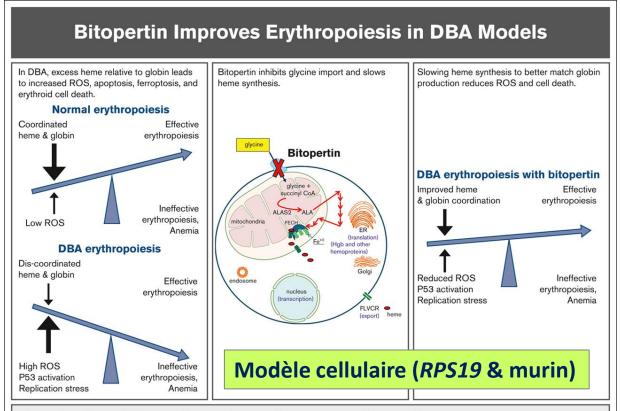
N = 30 pts prévus

Etude monocentrique (NIH)

Pts ABD adultes:

Non-répondeurs aux corticoïdes:

- patients transfusés
- patients non transfusés mais avec Hb < 9 g/dL


Patients intolérants aux corticoides

ASH 2023:

1086: Description étude

1355: Études pré-cliniques

Restricting glycine uptake with bitopertin improves erythropoiesis in preclinical models of Diamond-Blackfan anemia

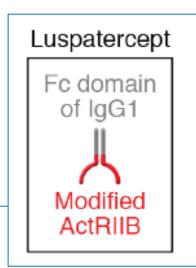
Conclusion: Bitopertin reduces heme synthesis, increases the erythroid differentiation of DBA cells in vitro, and improves anemia in a murine DBA model.

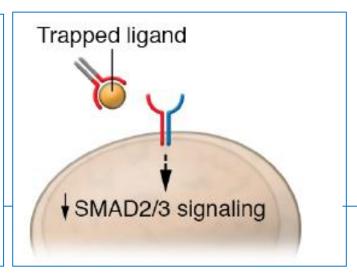
Doty et al. DOI: 10.1016/j.brci.2025.100010

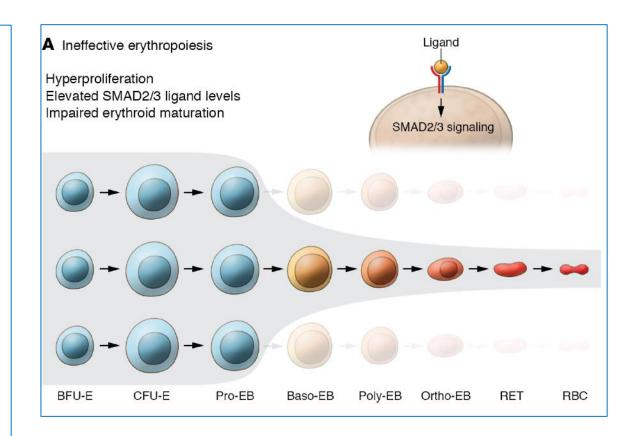
Study: completed (25.08.2025)

N = 15 pts recruited

Results?




Luspatercept


Les ligands de la voie SMAD2/3 (activine & GDF) ont un effet régulateur (-) sur l'érythropoïèse

LUSPA & Co: ligand-traps

Restauration de l'érythropoïèse

Luspatercept & anémies constitutionnelles

Syndrome thalassémiques:

- β thalassémies majeures et thalassémies NDT
- Hémoglobinose H (α thalassémie)

Anémies rares:

- Anémies sidéroblastiques constitutionnelles
- Dysérythropoïèses constitutionnelles
- Syndrome de l'Anémie de Blackfan Diamond?

à évaluer

LUSPARA trial

Population de l'étude: pts adultes, ayant une anémie rare génétiquement caractérisée, transfusés ou non

Dont SABD: mais ici patients TRES sélectionnes:

- uniquement pts <u>non</u> transfusés:
 - Sous corticoïdes ou en indépendance thérapeutique
 - MAIS anémiques: Hb < 10 g/dL
- Gène identifié: 2 sous-groupes: RPS19 vs RPL5 & RPL11

LUSPARA trial

Protocole: injection SC toutes les 3 semaines

3 rd dose reduction	2 nd dose reduction	1 st dose reduction	Starting dose	1 st dose increase
0.45 mg/kg	0.6 mg/kg	0.8 mg/kg	1.0 mg/kg	1.25 mg/kg

Conclusion

Guidelines disponibles: devraient améliorer le diagnostic du SABD et la prise en charge des patients

Greffe de moelle: nouvelles approches?

Nouveaux espoirs thérapeutiques avec 3 approches en cours d'évaluation:

- Bitopertine
- Thérapie génique
- Luspatercept

Merci pour votre attention

thierry.leblanc@aphp.fr

MaRIH network: Reference centres for rare Immunological and hematological diseases

Patients associations

- Site pédiatrique: Mony FAHD, Jean-Hugues DALLE & Thierry LEBLANC
- Site adulte: Flore SICRE de FONTBRUNE & Régis PEFFAULT DE LATOUR
- Laboratoire (génétique & recherche): Lydie DA COSTA
- OFABD: Isabelle MARIE

de Moelle

